
SecReT 2006

Rewriting-Based Access Control Policies

Anderson Santana de Oliveira1 ,2

INRIA & LORIA
615, Rue du Jardin Botanique, 54600 Villers-lès-Nancy, France

Abstract

In this paper we propose a formalization of access control policies based on term rewriting. The state of the
system to which policies are enforced is represented as an algebraic term, which allows us to model several
aspects of the policy environment. Policies are implemented by sets of rewrite rules, whose evaluation
produces authorization decisions. We discuss the relation between properties of term rewriting systems,
such as confluence and termination, and their consequences on defining trusted access control policies.

Keywords: Access Control Policies, Term Rewriting Systems

1 Introduction

Term rewriting [1] is a well-established paradigm for specifying and prototyping

systems. It has been proved useful in theorem proving, program transformation,

and algebraic specification. In many practical situations, its straightforward formal

background allowed to rapidly prototype and verify diverse kinds of systems. In

the domain of computer security, term rewriting has been successfully applied to

help reasoning about some of its aspects, notably in verification of security proto-

cols [17,7].

Nevertheless, there are not many applications of term rewriting to security poli-

cies: up to our knowledge, few approaches have tried to introduce the use of rewrit-

ing into this domain[2,12]. The reader is referred to see a more extensive discussion

on related work in section 7.

Access control concerns stating the actions which principals (or subjects) are

allowed to execute in order to manipulate the objects (or resources) of a given

system. The most widespread framework for describing this kind of protection is the

access control matrix, a model adopted in the design of several operating systems.

The rows of the matrix contain the subjects (active entities of the system, such as

processes and users), the columns list the protected entities of the system (relevant

1 santana@loria.fr
2 Supported by Capes BEX.2120.03-8.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:santana@loria.fr

Santana de Oliveira

objects, such as files), and cells contain which access rights (read, write, execute,

etc.) are assigned to each active entity with respect to the protected resources. A

request from a subject to perform a certain action over an object will be granted

only if there exists an entry for that action in the corresponding cell.

Some fundamental models for access control rely on modified variants of the

access control matrix. For example, military security policies [4] add confidentiality

levels to subjects and objects. Then the fixed security policy states that a subject

cannot write to an object with inferior security level, and that it cannot read from

objects with superior security levels - no reads-up, no writes-down. Even though the

access control matrix is a support for a number of formalizations of access control

policies, it is not appropriate to capture more dynamic policies, such as policies

that depend on time, location, and many other possible attributes of the policy

environment.

This paper presents a formalization of access control policies based on term

rewriting. Policies are represented as sets of rewrite rules, whose evaluation pro-

duces authorization decisions, whilst requests and the environment where policies

are enforced are represented as algebraic terms. Since we consider the policy envi-

ronment as a “database of facts” under the form of a term, this formalization allows

us to capture many dynamic aspects that are important for policy enforcement, e.g.

diverse attributes of subjects and resources, referred as content-dependent condi-

tions in the literature [10].

The main goals of this work are to provide a formal semantics for an expressive

access control policy language, which is able to support dynamic policies; to provide

a design, where it is possible to have maintainable enforcement mechanisms, and

to characterize trusted policies by associating properties of the corresponding term

rewriting systems that implement a security policy. For example, the absence of

conflicts is an important property when both positive and negative authorizations

are possible. It assures that for a certain access request no grant and denial are

assigned at the same time.

Another goal of this formalization is to be able to facilitate policy enforcement.

The architecture we propose here clearly separates policy and enforcement mecha-

nism. Since policies are rewrite rules, a standard rewrite engine can do the job of

applying the policy to requests and evaluating the results.

The paper is organized as follows: Section 2 recalls some useful definitions on

term rewriting systems, Section 3 illustrates by an example the kind of access con-

trol policy we want to express, Section 4 presents what are the elements of the

policy environment, Section 5 presents and discuss rewriting-based policies, Sec-

tion 6 describes what kind of security mechanism is necessary to enforce these

policies, Section 7 presents a discussion on related works, and Section 8 concludes

and points out some future developments.

2 Preliminaries on Term Rewriting Systems

We recall some basic definitions on signatures and terms. A signature Σ = {S,F}

is a set of sorts S, together with a set of function symbols, each one associated to

a natural number by the arity function (ar : F → N), which denotes the number of

2

Santana de Oliveira

arguments. Fn is the subset of function symbols having n for arity, Fn = {f ∈ F |

ar(f) = n}. T (Σ,X) is the set of terms built from a given finite set F of function

symbols and a denumerable set X of variables. The set of variables occurring in

a term t is denoted by Var(t). If Var(t) is empty, t is called a ground term, and

T (Σ) is the set of all ground terms. A substitution σ is an assignment from X to

T (Σ), written, when its domain is finite, σ = {x1 7→ t1, . . . , xk 7→ tk}. The result of

applying a substitution σ to a term t ∈ T (Σ,X) is written σ(t).

A rewrite rule is an ordered pair of terms denoted l → r, where l, r ∈ T (Σ,X),

l /∈ X , and Var(r) ⊆ Var(l) . The terms l and r are respectively called the left-hand

side and the right-hand side of the rule. A rewrite system or term rewriting system

is a (finite or infinite) set of rewrite rules.

Given a rewrite system R, a term t rewrites to a term t′, which is denoted

t →R t′ if there exist a rule t → l of R, a position ω in t, a substitution σ, satisfying

t|ω = σ(l), such that t′ = t[σ(r)].

A subterm t|ω where a rewriting step can be applied is called redex. A term that

has no redex is said to be irreducible for R or in R-normal form.

A rewrite derivation is any sequence of rewriting steps t1 →R t2 →R . . . A

rewrite derivability relation
∗

−→R is defined on terms: t
∗

−→R t′ if there exists a

rewriting derivation from t to t′. If the derivation contains at least one step, it is

denoted by
+

−→R. A term rewriting systems is terminating if all rewrite derivations

are finite. It is confluent if for all terms t, u ,v, t
∗

−→R u and t
∗

−→R s implies

u
∗

−→R s and v
∗

−→R s, for some s.

3 Motivating Example

The example that follows has been slightly adapted from the XACML specifica-

tion [20], an initiative from the Oasis Consortium 3 to create a standard markup

language for role-based access control. Let us suppose that a medical corporation

adopts the policy below:

(i) A person, identified by his or her patient number, may read any record for

which he or she is the designated patient.

(ii) A person may read any record for which he or she is the designated parent or

guardian, and for which the patient is under 16 years of age.

(iii) A physician may write to any medical element for which he or she is the

designated primary care physician.

(iv) An administrator shall not be permitted to read or write to medical elements

of a patient record.

These rules illustrate the dependency of authorizations on the attributes of ob-

jects and subjects. This reflects the current needs in terms of flexibility in the

declaration of access control for modern applications, being a representative of the

kind of policies we are interested in.

The idea behind the statement of access control policies with high level of ab-

straction is that policy specification and enforcement can be separated from other

3 http://www.oasis-open.org/

3

http://www.oasis-open.org/

Santana de Oliveira

Si
pa t i en t (”Bart Simpson” , 1 , 14 , guardian (”Homer Simpson”))
+ record (pa t i en t (”Bart Simpson” , 1 , 14 ,

guardian (”Homer Simpson”)) ,
phys i c i an (” Ju l i u s Hibbert ” , 1) ,
a n t i b i o t i c , payment (v i s a))

+ phys i c i an (” Ju l i u s Hibbert ” , 1)

Request
req (phys i c i an (” Ju l i u s Hibbert ” , 1) ,

writeMedElements ,
r ecord (pa t i en t (”Bart Simpson” , 1 , 14 ,

guardian (”Homer Simpson”)) ,
phys i c i an (” Ju l i u s Hibbert ” , 1) ,
a n t i b i o t i c , payment (v i s a)))

Si+1
pat i en t (”Bart Simpson” , 1 , 14 , guardian (”Homer Simpson”))
+ record (pa t i en t (”Bart Simpson” , 1 , 14 ,

guardian (”Homer Simpson”)) ,
phys i c i an (” Ju l i u s Hibbert ” , 1) ,
a n t i b i o t i c and a sp i r i n , payment (v i s a))

+ phys i c i an (” Ju l i u s Hibbert ” , 1)

Figure 1. A system state transition after a request to write a medical element

functionalities of the application, thus avoiding bugs and increasing maintainability.

A possible execution of the medical system mentioned above is shown in Figure 1.

At a given point of time, the system is in state si, where the values of attributes

for objects and resources appears in the first line of the table. The “+” operator

concatenates terms, it is better explained in section 5. The second line of the table

illustrates the fact that the primary physician of a certain patient record, requires

to prescribe a new medical element for this patient. According to the policy we just

described, this request must be assigned grant access, therefore the system state

changes to state si+1 (last line of the table), containing the updated entry for the

medical record.

We make a few assumptions about the application: a representation of the

current state of the application under the form of a term is always available, as well

as the user requests. In practice, this will require to modify the program in order

to capture its state, and to intercept the control flow for monitoring intervention,

every time a resource is to be accessed.

4 The Policy Environment

Regarding access control, one is interested in stating which actions, principals (or

subjects) are allowed to execute in order to manipulate the objects (or resources) of a

given system. The most widespread representation schema to this end is the access

control matrix where lines list the subjects, columns contain the objects and cells

keep information about the privileges (read, right, execute) assigned to an active

entity over the passive ones.

This schema is enough to address most of the requirements for mandatory and

4

Santana de Oliveira

permit(s, a, o)

Si

S i+1

Reference
Monitor

Context

Policy
Rules

req(s, a, o)

Figure 2. General representation schema

discretionary access control models, but it is not adequate to express highly abstract

policies, like the one from our running example, presented in Section 3. For declaring

this kind of policy, it is necessary to write sentences about the current values of

attributes of subjects and resources, and not only their identities. We call policy

environment the configuration of all elements relevant to access control.

We call target system, denoted by T , any arbitrary application which must re-

spect a given security policy. A target is represented by a set of states and state

transitions, which are triggered by access requests. To each state si of T we asso-

ciate an algebraic term containing the facts that are true in si. Requests are also

represented as terms (see Figure 1).

The idea we defend here, which was also recently exposed in some papers [3,21],

is that access control is one aspect of the application, that can be specified, im-

plemented and maintained independently. Furthermore, the mechanism applying

a certain policy should be an external entity with respect to the application. An

overview picture of policy enforcement is presented in Figure 2. The application

context in state si together with the current request req(s, a, o) are delivered to a

reference monitor. The reference monitor evaluates every request according to the

current policy. In the case the policy grants access for the request, the application

proceeds. Otherwise, the execution of the application is aborted 4 .

We denote ΣT the signature of the target system T , which provides the profiles

of the constructors needed to build the representation of the system state. Conse-

quently, the database of facts at each stage of the execution of T is a the set ground

terms from T (ΣT).

In out running example, we have used order-sorted specifications to formalize

the problem and the system using Maude [9].

Example 4.1 We use the signature below for the medical application described

in Section 3, where a patient is represented by a term containing name, number,

age, and a guardian, in this order. The keyword ctor indicates that the operator

4 It would be possible to use exceptions to handle negative authorizations, but this issue is not explored in
this paper.

5

Santana de Oliveira

it follows is a constructor.

fmod MEDICAL−SYSTEM−SIGNATURE i s

protecting STRING .

protecting NAT .

sort Pat ient Phys ic ian Record Administrator Guardian

MedicalElements OtherElements .

op pat i en t : S t r ing Nat Nat Guardian −> Pat ient [ctor] .

op admin i s t r a tor : Nat −> Administrator [ctor] .

op guardian : S t r ing −> Guardian [ctor] .

op phys i c i an : S t r ing Nat −> Phys ic ian [ctor] .

op record : Pat ient Phys ic ian MedicalElements

OtherElements −> Record [ctor] .

endfm

In order to better express policies, it is necessary to indicate which sorts from

ΣT are subsorts of subject, action and object, as well as to introduce the available

actions in T .

Example 4.2 The module below illustrates how we can determine subjects, objects

and actions in the medical system presented in Section 3, through the use of subsorts.

Actions are represented as constant symbols for simplicity.

fmod MEDICAL−SYSTEM−TERM−SIGNATURE i s

including MEDICAL−SYSTEM−SIGNATURE .

including POLICY−SIGNATURE .

subsort Phys ic ian < Subject .

subsort Pat ient < Subject .

subsort Guardian < Subject .

subsort Administrator < Subject .

subsort Record < Object .

subsort MedicalElements < Object .

subsort OtherElements < Object .

op readRecord : −> Action .

op writeRecord : −> Action .

op readMedElements : −> Action .

op writeMedElements : −> Action .

op readOtherElements : −> Action .

op writeOtherElements : −> Action .

endfm

Sorts and subsorts allows us to distinguish subjects and objects among the sub-

terms appearing in the conjunction of ground terms (through the “+” operator) of

the target’s application current state. The order-sorted nature of the terms avoids

several common mistakes , because type-checking is performed on the specifications.

6

Santana de Oliveira

5 Rewriting-Based Policies

In this section, we address the problem of specifying access control policies through

term rewriting systems. We present an initial definition of security policy that

characterizes policies syntactically. This definition includes potentially “unsafe”

policies. After discussing the desired properties of an access control policies, we

present a refined definition for “safe” policies.

A security policy is a statement of what is, and what is not, allowed [5]. When

dealing with access control, a (formal) policy specification language will help to

unambiguously define the rules that will govern the actions principals are allowed

to execute over a set of resources. In order to deal with dynamic policies, a policy

specification language has to provide means of encoding high level statements con-

cerning the policy environment, into a function from access requests to authorization

decisions.

In the following we present the signature for rewriting-based access control poli-

cies. It clearly establishes the functions that need to be defined by the rewrite

system in order to compute authorizations. Requests are represented as ground

terms containing the 3-tuple: subject, action and object, according to the construc-

tor symbol below:

req : Subject × Action × Object → Request

Positive and negative authorizations can be used in the same policy specification

with the help of distinct constructors. The signatures for permit and deny contain

subject, action and object, which gives more control on the permissions (or denials)

generated from each request evaluation. The profiles for these constructors are

shown below:

{deny, permit} : Subject × Action × Object → Authorization

The goal of the policy designer is to provide a set of rules that will be used by

the reference monitor to evaluate every incoming request. The resulting decision

does not depend exclusively on the request, but also on the context of the target

application at the time the request is made. In the formalism we introduce in this

paper, policies consist in a set of rewrite rules defining the auth operator, whose

signature is

auth : Request × Term → Authorization

The auth function returns a decision term (permit or deny) derived from the nor-

malization process issued from a request term, and from the information contained

in the Term argument, which corresponds to a database of facts. The Term objects

can be aggregated in a conjunction of ground terms by the use of the associative

and commutative operator, “+”. This eases the expression of the conditions where

a certain access control rule must be applied. The full policy signature, ΣP , is

illustrated by the code that follows.

7

Santana de Oliveira

fmod POLICY−SIGNATURE i s

sort Object .

sort Subject .

sort Action .

sort Term .

sort Request .

sort Author izat ion .

subsort Subject < Term .

subsort Object < Term .

subsort Action < Term .

op req : Sub ject Action Object −> Request [ctor] .

op permit : Sub ject Action Object −> Author izat ion [ctor] .

op deny : Subject Action Object −> Author izat ion [ctor] .

op auth : Request Term −> Author izat ion .

op + : Term Term −> Term [assoc comm] .

endfm

Definition 5.1 [Rewriting-Based Access Control Policy] A rewriting-based access

control security policy, P, is a term rewriting system over T (Σ,X), with Σ =

ΣT ∪ ΣP , where the top symbol of the left hand side of each rules is the auth

function.

This definition states that a given set of rewrite rules is an access control policy if

they transform terms rooted by auth symbol, which corresponds to the evaluation of

an access request in a given environment. The syntactical restriction helps focusing

on the actual problem of defining the permissions that should be granted in a

given context. Although this definition seems restrictive, in practice rewriting-

based policies can work in conjunction with an auxiliary set of rewrite rules to help

defining the auth function. The following example illustrates how a policy can be

declared.

Example 5.2 The following set of rewrite rules translates the natural language

rules from Section 3 in our formalism. The rewrite rules appear in the same order

as the plain English statements.

mod POLICY1 i s

protecting MEDICAL−SYSTEM−TERM−SIGNATURE .

var p : Pat ient . var ph : Phys ic ian .

var g : Guardian . var adm : Administrator .

vars s1 s2 : S t r ing . var t : Term .

var n1 n2 : Nat . var me : MedicalElements .

var oe : OtherElements .

r l [patReadRecord] :

auth (req(p, readRecord , record (p, ph, me, oe)) ,

p + record (p , ph , me , oe) + t)

=> permit (p , readRecord , record (p , ph , me, oe)) .

8

Santana de Oliveira

r l [guardReadRecord] :

auth (req(g , readRecord ,

record (patient (s1 , n1, n2, g) , ph, me, oe)) ,

pat i en t (s1 , n1 , n2 , g) +

record (pat i en t (s1 , n1 , n2 , g) , ph , me, oe) + t)

=> permit (g , readRecord , record (pa t i en t (s1 , n1 , n2 , g) ,

ph , me, oe)) .

r l [physWriteMedElem] :

auth (req(ph, writeMedElements, record (p, ph, me, oe)) ,

r ecord (p , ph , me, oe) + t)

=> permit (ph , writeMedElements , record (p , ph , me, oe)) .

r l [admReadMedElem] :

auth (req(adm, readMedElements, record (p, ph, me, oe)) ,

adm + record (p , ph , me, oe) + t)

=> deny (adm, readMedElements , record (p , ph , me, oe)) .

r l [admWriteMedElem] :

auth (req(adm,writeMedElements, record (p, ph, me, oe)) ,

adm + record (p , ph , me, oe) +t)

=> deny (adm, writeMedElements , record (p , ph , me, oe)) .

endm

There are several issues that can complicate policy enforcement. For example,

the term rewriting systems implementing a policy can be non-terminating. That

would block the target system when it makes certain access requests to the reference

monitor, which would not be able to compute an authorization in finite time. We

suggest that a refinement discipline for policy specification should be followed, such

that verification steps for checking a number of important properties are performed

before enforcing some policy. In the next section we discuss what are the desired

properties for rewriting-based policies.

5.1 Properties of security policies

Termination

The first interesting property is termination. This ensures that every request

evaluation is finite, thus avoiding the target application execution to block indef-

initely. Termination of term rewriting systems has been widely studied and there

are many tools available that check termination of term rewriting systems such as

CiMe, Approve, Cariboo, to mention a few 5 .

Readers must be aware that policy combination may lead to problems, since

5 Check for references and results on the Termination Competition home page:
http://www.lri.fr/∼marche/termination-competition/

9

http://www.lri.fr/~marche/termination-competition/

Santana de Oliveira

termination is not a modular property [24]. This means that the union of the sets

of rules of two terminating term rewriting systems may not produce a terminating

one. Most of the positive results on the union of term rewriting systems assume

the signature of the composed systems to be disjoint. A survey on modularity of

various properties of term rewriting systems is found on [15].

Consistency

The combined use of positive and negative authorizations brings two main prob-

lems: incompleteness, when no authorization is specified for a certain request, and

inconsistency, when for an access request there are both negative and positive au-

thorizations. Classical approaches for policy specification adopt either the closed

policy or open policy assumption, meaning that only positive or negative authoriza-

tions need to be specified, respectively. This has shown to be restrictive in practice.

The current trend is to allow the user to discriminate between what is and what is

not allowed [10].

Another way to deal with that problem, is to adopt conflict resolution strategies,

that assign priorities to the conflicting cases. For example, one can say that deny

overrides any other authorization computed for a certain request. Correspondingly,

the permit overrides combinator always allow access in case of conflicting decisions.

This kind of disambiguation is available in a number of policy specification lan-

guages, including XACML [20].

In the case of rewriting-based policies, conflicts are avoided if the corresponding

rewriting system has the confluence property. This will ensure that a single response

is derived from a given request and from the application current state. In contrast

to termination, confluence has a better behavior with respect to the union of two

confluent term rewriting systems. It is known that confluence is a modular property

of rewrite systems with disjoint signatures [25].

Completeness

Completeness means that for each request corresponds an authorization decision.

The usual way of assuring completeness is to assume that the open or closed policy

operates as default. In term rewriting, a system is said to be called sufficiently

complete if all ground terms can be reduced to a normal form that only contains

constructors [6,13]. In the case of rewriting-based access control policies, this con-

sists in checking whether the auth function is completely defined over the terms of

policy environment, and if its normal forms are permit or deny constructors.

Alternatively, the user can make use of “meta” rules to determine default deci-

sions in the case there are no redexes for a given request and environment. These

rules are either of the form

auth(req(s1, a1, o1), t) → deny(s1, a1, o1)

or

auth(req(s1, a1, o1), t) → permit(s1, a1, o1)

for closed or open policy respectively. These rules must be used at the meta level,

that is, the standard rewriting mechanism must take into account the fact that

10

Santana de Oliveira

these rules must be chosen when no other rule applies.

Given this discussion on the desired properties of an access control security

policies, we are ready to introduce the following definition:

Definition 5.3 [Trusted Security Policy] A trusted access control security policy is

a terminating and confluent term rewriting system, P, on the signature Σ = ΣT∪ΣP ,

that completely defines the auth function.

The word trust was chosen to express that the system administrator can have

much more confidence in a rewriting-based policy which has the properties of ter-

mination, confluence and sufficient completeness. This ensures that the policy un-

ambiguously states authorizations.

6 Security Mechanisms

In this section we discuss how security mechanisms can implement rewriting-based

policies, and how systems can be considered secure with respect to this formaliza-

tion.

A Security mechanism ensures that a target system T does respect the policy

being enforced during its whole execution. A state transition of T , si 7→ si+1,

corresponds to an access request from a subject to execute an action over a resource.

The security mechanism must apply the rewrite rules provided by a policy P, over

the terms of T and the current request, auth(req(s, a, o), t). In the case it evaluates

to permit(s, a, o), the computation of T can continue, if it evaluates to deny(s, a, o)

then the enforcement mechanism must abort the execution of T . This characterizes

an execution monitoring security mechanism [23].

A given state ti of a target’s execution is considered valid if the information

contained in that state is authentic, which means that the database of facts is not

modified by an external malicious entity, and that this state was reached through

a sequence of positive authorizations.

Definition 6.1 [Secure System] A target system T is said secure w.r.t. a policy P,

if it starts from a valid state t0, and for every transition state ti 7→ ti+1 a new valid

state is produced.

This definition is close to classical automata-based approaches of secure systems,

from Goguen and Meseguer [14], and more recently, Scheneider [23], where assertions

are stated about the possible execution paths of the target system.

Another advantage of this approach is that the security mechanism can be reused

to implement access control for different policy sets, since the separation between

policy and mechanism is clear.

7 Related Work

The works more closely related with the one described in this paper are recent

initiatives that introduce term rewriting to the specification of security policies.

In [12], term rewriting is used to control the confidentiality level of data, by de-

scribing downgrading functions, in a concurrent programming setting, whose formal

11

Santana de Oliveira

model is based on a variant of process calculus.

In [2], authors model access control lists and role based access control (RBAC)

as term rewrite systems. They characterize consistency, totality, and completeness

of policies w.r.t the properties of the rewriting systems defining them, thus sharing

some of the goals of this paper. However, we focus on the dynamic aspects of the

policy environment to specify authorizations, and how access control rules can be

integrated in program development. In general, the main advantage of the approach

we present here in comparison with access control lists and RBAC is that it is

possible to express more constraints over the policy environment in a flexible way.

Most of the formal approaches based on rules to specify security policies rely on

some dialect of a “logic language”. We mention [16,11,18], to cite a few. Rewriting

has an associated logic [9] and calculus [8], which makes it an appropriate frame-

work for modeling various kinds of systems. The fact that rewriting used pattern

matching as its core mechanism makes available a number of important theoretical

results that are useful for analyzing security policies, as well.

For example, consider the consistency problem under policy composition. We

know that in the case of access control policies based in logics, this property can

be preserved by restricting the form of the rules, as discussed in [16]. In the other

hand, the rewriting-based approaches can profit from existing results concerning the

modularity of the confluence property. Under the same perspective, some necessary

conditions under which the termination of term rewriting systems is preserved, are

known [22,19]. This makes rewriting an interesting approach for defining policies in

a declarative manner.

With respect to enforcement mechanisms, the work presented here follows the

line of program monitoring, and considers that the code implementing the appli-

cation is untrusted. As an example, we mention the Polymer system [3], which

enforces access control on Java programs. Rewriting-based policies can be “inlined”

as a program monitor for any target application. This can be achieved by relating

the policy signature with the signature of the target program, in order to intercept

its sensitive function calls. One technique that allows such manipulation is program

transformation, that aims to generate new code, preserving the program semantics,

a field where term rewriting is widely employed.

8 Conclusions and Future Work

We have discussed in this paper a formalization for access control policies using term

rewriting. The resulting language allows us to express access control rules which

capture dynamic conditions of the policy environment, providing a flexible way to

encode authorizations. Rewrite specifications of access control written according

this proposal can be employed to rapidly prototype policies, since several efficient

implementations of term rewriting systems are available. Reasoning about some

key properties of access control policies is also made possible, thanks to the corre-

spondence we have established between the properties of policies, like consistency,

and those of term rewriting systems.

As future work, we shall investigate how rewriting strategies can be useful in pol-

icy composition and conflict resolution. An implementation for enforcing rewriting-

12

Santana de Oliveira

based policies will also be built, in order to validate this model, by using the monitor

inlining approach, as discussed in the previous section.

9 Acknowledgments

I would like to thank my advisors Claude and Hélène Kirchner for the fruitful

discussions on this subject, and also Judson Santiago and Horatiu Cirstea for reading

previous versions of this paper. I would like to thank the referees for their valuable

comments and suggestions.

References

[1] Baader, F. and T. Nipkow, “Term rewriting and all that,” Cambridge University Press, New York, NY,
USA, 1998.

[2] Barker, S. and M. Fernández, Term rewriting for access control., in: E. Damiani and P. Liu, editors,
DBSec, Lecture Notes in Computer Science 4127 (2006), pp. 179–193.

[3] Bauer, L., J. Ligatti and D. Walker, Composing security policies with polymer., in: V. Sarkar and M. W.
Hall, editors, PLDI (2005), pp. 305–314.

[4] Bell, E. D. and L. J. LaPadula, Secure computer systems: Mathematical foundations, Technical Report
Mitre Report ESD-TR-73-278 (Vol. I-III), Mitre Corporation (1974).

[5] Bishop, M., “Introduction to Computer Security,” Addison-Wesley Professional, 2004.

[6] Bouhoula, A. and F. Jacquemard, Automatic verification of sufficient completeness for conditional
constrained term rewriting systems, Technical Report RR-5863, INRIA (2006).
URL http://hal.inria.fr/inria-00070163/en/

[7] Cirstea, H., Specifying authentication protocols using rewriting and strategies., in: I. V. Ramakrishnan,
editor, PADL, Lecture Notes in Computer Science 1990 (2001), pp. 138–152.

[8] Cirstea, H. and C. Kirchner, The rewriting calculus — Part I and II, Logic Journal of the Interest
Group in Pure and Applied Logics 9 (2001), pp. 427–498.

[9] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and J. F. Quesada, Maude:
specification and programming in rewriting logic., Theor. Comput. Sci. 285 (2002), pp. 187–243.

[10] di Vimercati, S. D. C., P. Samarati and S. Jajodia, Policies, models, and languages for access control.,
in: S. Bhalla, editor, DNIS, Lecture Notes in Computer Science 3433 (2005), pp. 225–237.

[11] Dougherty, D. J., K. Fisler and S. Krishnamurthi, Specifying and reasoning about dynamic access-
control policies., in: U. Furbach and N. Shankar, editors, IJCAR, Lecture Notes in Computer Science
4130 (2006), pp. 632–646.

[12] Echahed, R. and F. Prost, Security policy in a declarative style., in: P. Barahona and A. P. Felty,
editors, PPDP (2005), pp. 153–163.
URL http://doi.acm.org/10.1145/1069774.1069789

[13] Gnaedig, I. and H. Kirchner, Computing constructor forms with non terminating rewrite programs.,
in: A. Bossi and M. J. Maher, editors, PPDP (2006), pp. 121–132.

[14] Goguen, J. A. and J. Meseguer, Security policies and security models., in: IEEE Symposium on Security
and Privacy, 1982, pp. 11–20.

[15] Gramlich, B., On termination and confluence properties of disjoint and constructor-sharing conditional
rewrite systems., Theor. Comput. Sci. 165 (1996), pp. 97–131.

[16] Halpern, J. Y. and V. Weissman, Using first-order logic to reason about policies., in: CSFW (2003),
pp. 187–201.

[17] Jacquemard, F., M. Rusinowitch and L. Vigneron, Compiling and verifying security protocols., in:
M. Parigot and A. Voronkov, editors, LPAR, Lecture Notes in Computer Science 1955 (2000), pp.
131–160.

13

http://hal.inria.fr/inria-00070163/en/
http://doi.acm.org/10.1145/1069774.1069789

Santana de Oliveira

[18] Jajodia, S., P. Samarati, M. L. Sapino and V. S. Subrahmanian, Flexible support for multiple access
control policies., ACM Trans. Database Syst. 26 (2001), pp. 214–260.

[19] Middeldorp, A., A sufficient condition for the termination of the direct sum of term rewriting systems,
in: LICS (1989), pp. 396–401.

[20] Moses, T., Extensible access control markup language (xacml) version 2.0, Technical report, OASIS
(2005).

[21] Pavlich-Mariscal, J. A., L. Michel and S. A. Demurjian, A formal enforcement framework for role-based
access control using aspect-oriented programming., in: L. C. Briand and C. Williams, editors, MoDELS,
Lecture Notes in Computer Science 3713 (2005), pp. 537–552.

[22] Rusinowitch, M., On termination of the direct sum of term-rewriting systems., Inf. Process. Lett. 26

(1987), pp. 65–70.

[23] Schneider, F. B., Enforceable security policies., ACM Trans. Inf. Syst. Secur. 3 (2000), pp. 30–50.

[24] Toyama, Y., Counterexamples to termination for the direct sum of term rewriting systems., Inf. Process.
Lett. 25 (1987), pp. 141–143.

[25] Toyama, Y., On the church-rosser property for the direct sum of term rewriting systems., J. ACM 34

(1987), pp. 128–143.

14

	Introduction
	Preliminaries on Term Rewriting Systems
	Motivating Example
	The Policy Environment
	Rewriting-Based Policies
	Properties of security policies

	Security Mechanisms
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

